Witt Subgroups and Cyclic Dieudonné Modules Killed by $p$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Generalized Yang-Baxter Operators for Dieudonné Modules

An enrichment of a category of Dieudonné modules is made by considering Yang–Baxter conditions, and these are used to obtain ring and coring operations on the corresponding Hopf algebras. Some examples of these induced structures are discussed, including those relating to the Morava K-theory of Eilenberg–MacLane spaces.

متن کامل

finite $p$-groups and centralizers of non-cyclic abelian subgroups

a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is ‎cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq‎ ‎z(g)$‎. ‎in this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{cac}$-$p$-groups‎.

متن کامل

Lifting Witt Subgroups to Characteristic Zero

Let k be a perfect field of characteristic p > 0. Using Dieudonné modules, we describe the exact conditions under which a Witt subgroup, i.e., a finite subgroup scheme of Wn, lifts to the ring of Witt Vectors W (k).

متن کامل

POS-groups with some cyclic Sylow subgroups

A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2001

ISSN: 0035-7596

DOI: 10.1216/rmjm/1020171677